3.46 \(\int \sqrt{a+b x^2} (c+d x^2)^2 \, dx\)

Optimal. Leaf size=149 \[ \frac{x \sqrt{a+b x^2} \left (a^2 d^2-4 a b c d+8 b^2 c^2\right )}{16 b^2}+\frac{a \left (a^2 d^2-4 a b c d+8 b^2 c^2\right ) \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{16 b^{5/2}}+\frac{d x \left (a+b x^2\right )^{3/2} (8 b c-3 a d)}{24 b^2}+\frac{d x \left (a+b x^2\right )^{3/2} \left (c+d x^2\right )}{6 b} \]

[Out]

((8*b^2*c^2 - 4*a*b*c*d + a^2*d^2)*x*Sqrt[a + b*x^2])/(16*b^2) + (d*(8*b*c - 3*a*d)*x*(a + b*x^2)^(3/2))/(24*b
^2) + (d*x*(a + b*x^2)^(3/2)*(c + d*x^2))/(6*b) + (a*(8*b^2*c^2 - 4*a*b*c*d + a^2*d^2)*ArcTanh[(Sqrt[b]*x)/Sqr
t[a + b*x^2]])/(16*b^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0879085, antiderivative size = 149, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {416, 388, 195, 217, 206} \[ \frac{x \sqrt{a+b x^2} \left (a^2 d^2-4 a b c d+8 b^2 c^2\right )}{16 b^2}+\frac{a \left (a^2 d^2-4 a b c d+8 b^2 c^2\right ) \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{16 b^{5/2}}+\frac{d x \left (a+b x^2\right )^{3/2} (8 b c-3 a d)}{24 b^2}+\frac{d x \left (a+b x^2\right )^{3/2} \left (c+d x^2\right )}{6 b} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x^2]*(c + d*x^2)^2,x]

[Out]

((8*b^2*c^2 - 4*a*b*c*d + a^2*d^2)*x*Sqrt[a + b*x^2])/(16*b^2) + (d*(8*b*c - 3*a*d)*x*(a + b*x^2)^(3/2))/(24*b
^2) + (d*x*(a + b*x^2)^(3/2)*(c + d*x^2))/(6*b) + (a*(8*b^2*c^2 - 4*a*b*c*d + a^2*d^2)*ArcTanh[(Sqrt[b]*x)/Sqr
t[a + b*x^2]])/(16*b^(5/2))

Rule 416

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1)*(c
 + d*x^n)^(q - 1))/(b*(n*(p + q) + 1)), x] + Dist[1/(b*(n*(p + q) + 1)), Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2)
*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /; F
reeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntB
inomialQ[a, b, c, d, n, p, q, x]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \sqrt{a+b x^2} \left (c+d x^2\right )^2 \, dx &=\frac{d x \left (a+b x^2\right )^{3/2} \left (c+d x^2\right )}{6 b}+\frac{\int \sqrt{a+b x^2} \left (c (6 b c-a d)+d (8 b c-3 a d) x^2\right ) \, dx}{6 b}\\ &=\frac{d (8 b c-3 a d) x \left (a+b x^2\right )^{3/2}}{24 b^2}+\frac{d x \left (a+b x^2\right )^{3/2} \left (c+d x^2\right )}{6 b}+\frac{\left (8 b^2 c^2-4 a b c d+a^2 d^2\right ) \int \sqrt{a+b x^2} \, dx}{8 b^2}\\ &=\frac{\left (8 b^2 c^2-4 a b c d+a^2 d^2\right ) x \sqrt{a+b x^2}}{16 b^2}+\frac{d (8 b c-3 a d) x \left (a+b x^2\right )^{3/2}}{24 b^2}+\frac{d x \left (a+b x^2\right )^{3/2} \left (c+d x^2\right )}{6 b}+\frac{\left (a \left (8 b^2 c^2-4 a b c d+a^2 d^2\right )\right ) \int \frac{1}{\sqrt{a+b x^2}} \, dx}{16 b^2}\\ &=\frac{\left (8 b^2 c^2-4 a b c d+a^2 d^2\right ) x \sqrt{a+b x^2}}{16 b^2}+\frac{d (8 b c-3 a d) x \left (a+b x^2\right )^{3/2}}{24 b^2}+\frac{d x \left (a+b x^2\right )^{3/2} \left (c+d x^2\right )}{6 b}+\frac{\left (a \left (8 b^2 c^2-4 a b c d+a^2 d^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{x}{\sqrt{a+b x^2}}\right )}{16 b^2}\\ &=\frac{\left (8 b^2 c^2-4 a b c d+a^2 d^2\right ) x \sqrt{a+b x^2}}{16 b^2}+\frac{d (8 b c-3 a d) x \left (a+b x^2\right )^{3/2}}{24 b^2}+\frac{d x \left (a+b x^2\right )^{3/2} \left (c+d x^2\right )}{6 b}+\frac{a \left (8 b^2 c^2-4 a b c d+a^2 d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )}{16 b^{5/2}}\\ \end{align*}

Mathematica [C]  time = 2.47574, size = 160, normalized size = 1.07 \[ \frac{x \sqrt{a+b x^2} \left (2 b x^2 \left (c+d x^2\right )^2 \text{HypergeometricPFQ}\left (\left \{\frac{1}{2},\frac{3}{2},2\right \},\left \{1,\frac{9}{2}\right \},-\frac{b x^2}{a}\right )+4 b x^2 \left (2 c^2+3 c d x^2+d^2 x^4\right ) \, _2F_1\left (\frac{1}{2},\frac{3}{2};\frac{9}{2};-\frac{b x^2}{a}\right )+7 a \left (15 c^2+10 c d x^2+3 d^2 x^4\right ) \, _2F_1\left (-\frac{1}{2},\frac{1}{2};\frac{7}{2};-\frac{b x^2}{a}\right )\right )}{105 a \sqrt{\frac{b x^2}{a}+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[a + b*x^2]*(c + d*x^2)^2,x]

[Out]

(x*Sqrt[a + b*x^2]*(7*a*(15*c^2 + 10*c*d*x^2 + 3*d^2*x^4)*Hypergeometric2F1[-1/2, 1/2, 7/2, -((b*x^2)/a)] + 4*
b*x^2*(2*c^2 + 3*c*d*x^2 + d^2*x^4)*Hypergeometric2F1[1/2, 3/2, 9/2, -((b*x^2)/a)] + 2*b*x^2*(c + d*x^2)^2*Hyp
ergeometricPFQ[{1/2, 3/2, 2}, {1, 9/2}, -((b*x^2)/a)]))/(105*a*Sqrt[1 + (b*x^2)/a])

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 190, normalized size = 1.3 \begin{align*}{\frac{{d}^{2}{x}^{3}}{6\,b} \left ( b{x}^{2}+a \right ) ^{{\frac{3}{2}}}}-{\frac{a{d}^{2}x}{8\,{b}^{2}} \left ( b{x}^{2}+a \right ) ^{{\frac{3}{2}}}}+{\frac{{a}^{2}{d}^{2}x}{16\,{b}^{2}}\sqrt{b{x}^{2}+a}}+{\frac{{a}^{3}{d}^{2}}{16}\ln \left ( x\sqrt{b}+\sqrt{b{x}^{2}+a} \right ){b}^{-{\frac{5}{2}}}}+{\frac{cdx}{2\,b} \left ( b{x}^{2}+a \right ) ^{{\frac{3}{2}}}}-{\frac{acdx}{4\,b}\sqrt{b{x}^{2}+a}}-{\frac{cd{a}^{2}}{4}\ln \left ( x\sqrt{b}+\sqrt{b{x}^{2}+a} \right ){b}^{-{\frac{3}{2}}}}+{\frac{{c}^{2}x}{2}\sqrt{b{x}^{2}+a}}+{\frac{{c}^{2}a}{2}\ln \left ( x\sqrt{b}+\sqrt{b{x}^{2}+a} \right ){\frac{1}{\sqrt{b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(1/2)*(d*x^2+c)^2,x)

[Out]

1/6*d^2*x^3*(b*x^2+a)^(3/2)/b-1/8*d^2/b^2*a*x*(b*x^2+a)^(3/2)+1/16*d^2/b^2*a^2*x*(b*x^2+a)^(1/2)+1/16*d^2/b^(5
/2)*a^3*ln(x*b^(1/2)+(b*x^2+a)^(1/2))+1/2*c*d*x*(b*x^2+a)^(3/2)/b-1/4*c*d/b*a*x*(b*x^2+a)^(1/2)-1/4*c*d/b^(3/2
)*a^2*ln(x*b^(1/2)+(b*x^2+a)^(1/2))+1/2*c^2*x*(b*x^2+a)^(1/2)+1/2*c^2*a/b^(1/2)*ln(x*b^(1/2)+(b*x^2+a)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/2)*(d*x^2+c)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.81612, size = 585, normalized size = 3.93 \begin{align*} \left [\frac{3 \,{\left (8 \, a b^{2} c^{2} - 4 \, a^{2} b c d + a^{3} d^{2}\right )} \sqrt{b} \log \left (-2 \, b x^{2} - 2 \, \sqrt{b x^{2} + a} \sqrt{b} x - a\right ) + 2 \,{\left (8 \, b^{3} d^{2} x^{5} + 2 \,{\left (12 \, b^{3} c d + a b^{2} d^{2}\right )} x^{3} + 3 \,{\left (8 \, b^{3} c^{2} + 4 \, a b^{2} c d - a^{2} b d^{2}\right )} x\right )} \sqrt{b x^{2} + a}}{96 \, b^{3}}, -\frac{3 \,{\left (8 \, a b^{2} c^{2} - 4 \, a^{2} b c d + a^{3} d^{2}\right )} \sqrt{-b} \arctan \left (\frac{\sqrt{-b} x}{\sqrt{b x^{2} + a}}\right ) -{\left (8 \, b^{3} d^{2} x^{5} + 2 \,{\left (12 \, b^{3} c d + a b^{2} d^{2}\right )} x^{3} + 3 \,{\left (8 \, b^{3} c^{2} + 4 \, a b^{2} c d - a^{2} b d^{2}\right )} x\right )} \sqrt{b x^{2} + a}}{48 \, b^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/2)*(d*x^2+c)^2,x, algorithm="fricas")

[Out]

[1/96*(3*(8*a*b^2*c^2 - 4*a^2*b*c*d + a^3*d^2)*sqrt(b)*log(-2*b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(b)*x - a) + 2*(8*
b^3*d^2*x^5 + 2*(12*b^3*c*d + a*b^2*d^2)*x^3 + 3*(8*b^3*c^2 + 4*a*b^2*c*d - a^2*b*d^2)*x)*sqrt(b*x^2 + a))/b^3
, -1/48*(3*(8*a*b^2*c^2 - 4*a^2*b*c*d + a^3*d^2)*sqrt(-b)*arctan(sqrt(-b)*x/sqrt(b*x^2 + a)) - (8*b^3*d^2*x^5
+ 2*(12*b^3*c*d + a*b^2*d^2)*x^3 + 3*(8*b^3*c^2 + 4*a*b^2*c*d - a^2*b*d^2)*x)*sqrt(b*x^2 + a))/b^3]

________________________________________________________________________________________

Sympy [B]  time = 10.1787, size = 291, normalized size = 1.95 \begin{align*} - \frac{a^{\frac{5}{2}} d^{2} x}{16 b^{2} \sqrt{1 + \frac{b x^{2}}{a}}} + \frac{a^{\frac{3}{2}} c d x}{4 b \sqrt{1 + \frac{b x^{2}}{a}}} - \frac{a^{\frac{3}{2}} d^{2} x^{3}}{48 b \sqrt{1 + \frac{b x^{2}}{a}}} + \frac{\sqrt{a} c^{2} x \sqrt{1 + \frac{b x^{2}}{a}}}{2} + \frac{3 \sqrt{a} c d x^{3}}{4 \sqrt{1 + \frac{b x^{2}}{a}}} + \frac{5 \sqrt{a} d^{2} x^{5}}{24 \sqrt{1 + \frac{b x^{2}}{a}}} + \frac{a^{3} d^{2} \operatorname{asinh}{\left (\frac{\sqrt{b} x}{\sqrt{a}} \right )}}{16 b^{\frac{5}{2}}} - \frac{a^{2} c d \operatorname{asinh}{\left (\frac{\sqrt{b} x}{\sqrt{a}} \right )}}{4 b^{\frac{3}{2}}} + \frac{a c^{2} \operatorname{asinh}{\left (\frac{\sqrt{b} x}{\sqrt{a}} \right )}}{2 \sqrt{b}} + \frac{b c d x^{5}}{2 \sqrt{a} \sqrt{1 + \frac{b x^{2}}{a}}} + \frac{b d^{2} x^{7}}{6 \sqrt{a} \sqrt{1 + \frac{b x^{2}}{a}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(1/2)*(d*x**2+c)**2,x)

[Out]

-a**(5/2)*d**2*x/(16*b**2*sqrt(1 + b*x**2/a)) + a**(3/2)*c*d*x/(4*b*sqrt(1 + b*x**2/a)) - a**(3/2)*d**2*x**3/(
48*b*sqrt(1 + b*x**2/a)) + sqrt(a)*c**2*x*sqrt(1 + b*x**2/a)/2 + 3*sqrt(a)*c*d*x**3/(4*sqrt(1 + b*x**2/a)) + 5
*sqrt(a)*d**2*x**5/(24*sqrt(1 + b*x**2/a)) + a**3*d**2*asinh(sqrt(b)*x/sqrt(a))/(16*b**(5/2)) - a**2*c*d*asinh
(sqrt(b)*x/sqrt(a))/(4*b**(3/2)) + a*c**2*asinh(sqrt(b)*x/sqrt(a))/(2*sqrt(b)) + b*c*d*x**5/(2*sqrt(a)*sqrt(1
+ b*x**2/a)) + b*d**2*x**7/(6*sqrt(a)*sqrt(1 + b*x**2/a))

________________________________________________________________________________________

Giac [A]  time = 1.14444, size = 174, normalized size = 1.17 \begin{align*} \frac{1}{48} \,{\left (2 \,{\left (4 \, d^{2} x^{2} + \frac{12 \, b^{4} c d + a b^{3} d^{2}}{b^{4}}\right )} x^{2} + \frac{3 \,{\left (8 \, b^{4} c^{2} + 4 \, a b^{3} c d - a^{2} b^{2} d^{2}\right )}}{b^{4}}\right )} \sqrt{b x^{2} + a} x - \frac{{\left (8 \, a b^{2} c^{2} - 4 \, a^{2} b c d + a^{3} d^{2}\right )} \log \left ({\left | -\sqrt{b} x + \sqrt{b x^{2} + a} \right |}\right )}{16 \, b^{\frac{5}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/2)*(d*x^2+c)^2,x, algorithm="giac")

[Out]

1/48*(2*(4*d^2*x^2 + (12*b^4*c*d + a*b^3*d^2)/b^4)*x^2 + 3*(8*b^4*c^2 + 4*a*b^3*c*d - a^2*b^2*d^2)/b^4)*sqrt(b
*x^2 + a)*x - 1/16*(8*a*b^2*c^2 - 4*a^2*b*c*d + a^3*d^2)*log(abs(-sqrt(b)*x + sqrt(b*x^2 + a)))/b^(5/2)